Ground Rings and Their Modules in 2 D Gravity with c ≤ 1 Matter
نویسندگان
چکیده
All solvable two-dimensional quantum gravity models have non-trivial BRST cohomology with vanishing ghost number. These states form a ring and all the other states in the theory fall into modules of this ring. The relations in the ring and in the modules have a physical interpretation. The existence of these rings and modules leads to nontrivial constraints on the correlation functions and goes a long way toward solving these theories in the continuum approach.
منابع مشابه
On nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملAssociated Graphs of Modules Over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...
متن کامل$n$-cocoherent rings, $n$-cosemihereditary rings and $n$-V-rings
Let $R$ be a ring, and let $n, d$ be non-negative integers. A right $R$-module $M$ is called $(n, d)$-projective if $Ext^{d+1}_R(M, A)=0$ for every $n$-copresented right $R$-module $A$. $R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $R$-module is $(n, d)$-projective. $R$...
متن کاملQuantum Rings and Recursion Relations in 2D Quantum Gravity
I study tachyon condensate perturbations to the action of the two dimensional string theory corresponding to the c=1 matrix model. These are shown to deform the action of the ground ring on the tachyon modules, confirming a conjecture of Witten. The ground ring structure is used to derive recursion relations which relate (N+1) and N tachyon bulk scattering amplitudes. These recursion relations ...
متن کاملSo(2,c) Invariant Ring Structure of Brst Cohomology and Singular Vectors in 2d Gravity with C < 1 Matter
We consider BRST quantized 2D gravity coupled to conformal matter with arbitrary central charge c M = c(p, q) < 1 in the conformal gauge. We apply a Lian-Zuckerman SO(2, C I) ((p, q)-dependent) rotation to Witten's c M = 1 chiral ground ring. We show that the ring structure generated by the (relative BRST cohomology) discrete states in the (matter ⊗ Liouville ⊗ ghosts) Fock module may be obtain...
متن کامل